NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

venus casino 67 | ruby slots sign up | voucher shopee 1 triệu | dragon island slot | indian casinos in oklahoma | betphoenix casino | fruits n royals slot | lá 3 bích | 777 casino games | hack quay slot | s666 | dimm slots là gì | khu cau keo net | u23 việt nam vs u23 croatia | slot machine bonus | slot vuejs | pharmacie casino montpellier | slot liên quân | cau dep 88 | bejeweled 2 slots | soi cau 4 so vip 247 | truyen dien van | new free slots | slot machine occasion | west casino | slot machine java | casino seo services | genting casino | taxi 7 chỗ | giải đặc biệt năm | 888 live casino | first slot machine 1887 | snow slot | play double bubble slot | thống kê lô | dat cuoc | 1429 uncharted seas slot review | live dealer casinos | golden palace casino | online casino 888 | tú lơ khơ tá lả phỏm zingplay | slot stop | rocky gap casino | macao du doan | online casino marketing strategy |