NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

ketqua100ngay | neue online casinos 2020 | rebuy stars casino | hellboy slot | mobile slots bonus | tạo tên liên quân đẹp | chém hoa quả | co up sanh rong | máy tính casino | slot boot | neteller slots | kerching casino | online slot machines that pay real money | b sports bet | slots that pay real money | evowars io game y8 | win2888 casino | tiger casino slots | nhạc đám cưới tiếng anh | hạnh phúc nhỏ của anh thuyết minh | slot god of wealth | con trâu số mấy | bong88viet | dragon born slot | slot machine symbols meaning | xskt3mien | virgin slots mobile | tijuana vs | tai88vin link | 1x slot casino | xsmnchu nhat | regular slotted container box | m88 casino | game khung log | book of ra deluxe slot | mơ người chết sống lại | soi247 | dac biet năm | bongdalu 38com | the nugget casino | jungle trouble slot | slotted metal | chumba casino codes | venetian casino las vegas | list of casinos | druid spell slots | slotland casino | jugar casino online | dagathomo tructiep |