NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

giải đặc biệt tuần tháng năm | vwin com | does my laptop have pcie slot | mr vegas casino review | minecraft slot machine plugin | golden palace casino | y8 hai nguoi | casino winner kroon | play together miễn phí | ku casino us | zing me dang nhap | used slot machines for sale | mgm grand hotel and casino las vegas nv united states | thống kê giải đặc biệt năm | rắn số mấy | prime slots mobile | booking time slots online | slot machine tricks | casino royale 2006 | tên kí tự game | slotted disc | win 69 slot | tải teaching feeling | casino with poker | slot vlt | hellboy slot | wap soicauxoso | cách giải rubik tầng 3 | no download casino | casino spiele kostenlos book of ra | casino lights png | casino game code | slot online asia | reset fo4 | vòng quay kim cương free fire | free slot machines with bonus | xổ số kiên giang ngày 1 tháng 5 | u23 dubai cup | casino max bonus codes | hack quay slot | new casino not on gamstop | bitcoin casino club | mgm casino washington dc | lich thi đấu v league 2024 | laptop security lock slot | royal casino | truc tiep bong da tv |