NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

bonanza slot big win | trang chu vltk mobile | 888 casino mobile | burning desire slot | gói cước viettel wifi | windguru phan rang | 7 spins casino review | slot toto | kinh nghiệm lô de | lucky 88 slot machine | hp 88 ink | blackjack online casino live dealer | white rabbit slot free play | starspins slots | cmd368 tv | siêu nhân thần kiếm game | ww88 casino | android casino bonus | dream league soccer 2024 | poppyplaytimemobile club miễn phí | slots lv sign up bonus | link sopcast bong da hom nay | đăng ký làm đại lý ku casino | around the world slot | slots free spins no deposit | hybrid slot | nieuw slot voordeur | irish casino sites | thống kê giải đặc biệt năm 2024 | spintastic casino | aco slot drain | deutsche casinos mit bonus ohne einzahlung | sdxc card slot | xsqbinh | agen judi live casino | cakiem slot | aristocrat slots | bong hinh trong tim | intertops casino | kqxs daklak | foxy casino review | steam tower slot review | what online slots pay real money |