NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino de monte carlo salle medecin | double bubble casino | las vegas casino png | xổ số vietlott mega | accommodation christchurch casino | slot pattern react | ssd wifi slot | peggle slots | slot pattern | jenis permainan slot | hialeah casino | casino web | giải đặc biệt cả năm | boku casino sites | slotted metal bar | 10 free no deposit mobile casino | choi casino truc tuyen | dai chien kame | đề về 11 hôm sau đánh con gì | v9betvn | trang chu vltk mobile | double up casino slot machines | casino truc tuyen | casino hotel for sale | play free slots | doc truyen ngon tinh hay | the albuquerque downs racetrack & casino | t slot aluminum extrusion | casino in bangkok pattaya | xosothantai mobi | genting casino | dortmund đấu với augsburg | casino hồ tràm grand | win 777 slot | trò chơi casino trực tuyến | bảng đặc biệt 500 ngày | cryptocurrency casino | xổ số vũng tàu ngày 11 tháng 1 | bitsat slot |