NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

liên quân lmhmod | casino cage | bingo sites with slots | slot machine occasion | mega slot | tải bắn cá h5 | witcher 3 slots slots slots | retro reels extreme heat slot | thien ha casino | cuclacnet | du doan lodephomnay | slot machine online | agbong | xem k pc | chăm sóc xe | venetian macau casino | vào bóng nhanh không bị chặn | trực tiếp bóng đá bongda365 | casino engineering | co giao thao | best slot machine games | 888 casino online | kí tự tên | vespa slot | baocaonoibo | trò chơi roblox | mega slot | minecraft slot id | game đáu trường khắc nghiệt | sport288 | casino vũng tàu | khu cau keo net | lucky slots casino games | regular slotted container box | chăm sóc ô tô | lịch thi đấu playoff lck | soi cầu hcm chính xác | nap sohagame | online casino zahlt nicht aus | nuoilo 247 net | du doan xsmn dai phat | dàn đề 10 số | con trâu số mấy | download king tips | cherry gold casino | xsbd 19 1 | dac biet năm | how to enable 2nd ram slot |