NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

bigclub | jogar slots online | doc bao24h hom nay | checker bắc ninh | best online casino in new zealand | slotted post | rtp slot machines | slot machine tricks | bigvip slot | xe exciter 135 | fifa nhật | king of macedonia slot | quay hũ slot | lich thi dau vcs | carnival queen slot | việt nam 7m cn | thống kê giải đặc biệt cả năm | sv 888 casino | xsmbtruc | jackpotcity casino review | tần suất lôtô | casino thomo | loteria slot machine | secret of the stones slot game | casino grande monde | thánh bắn cá slot | code vip hải tặc đại chiến | dan de 34 so | casino buffet prices | isle of capri casino | wolf rising slot | xóa trang trắng word | gold party casino free slots | double bubble slot | slogan tiếng anh | sg slots | huong vi tinh than tap 34 | appointment slots | slogan tiếng anh | sheik yer money slot | rio all suite hotel & casino | hatano yui | livescore kqbd | bet casino | thống kê đặc biệt theo năm | free 5 no deposit casino uk | dragon king slots | asian casino game |