NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

mod shadow fight 2 | sidewinder slot | kqbdwap | câu lạc bộ bóng đá western united | casino buffet prices | casino royale online gambling | mu alpha test hôm nay | tự tạo icon | best credit card casino | casino reviews nz | mobile zodiac casino | juegos de casino online con dinero real | elements slot | slot machine jackpot | magisk manager | jade magician slot | bestes casino las vegas | fun 8802 | dragon island slot | đánh bạc casino | sunquest slot | sc card slot dell | 1gom com ty le keo malaysia | live asianbookie | chơi casino trực tuyến chỉ có thua | mr green casino erfahrung | fun 8802 | betvisa city | matrix 8 casino | montezuma slot | igram io | chơi casino trực tuyến trên điện thoại | vdqg argentina | gamehayvl | thống kê lô tô miền bắc | crank and slotted link | trực tiếp đá gà casino 67 hôm nay | sol casino | 888 casino | casino online italia | lich thi dau chung ket the gioi lmht 2016 | centurion slot |