NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

xổ số may mắn | rizk casino review | thanh gươm diệt quỷ 3 | live tiếng anh là gì | xs khanh hoa thu 4 | chống chuột cho xe ô tô | xst6 | tiger casino slots | casinos in henderson nv | hà lan senegal | game slot doi thuong moi nhat | rắn số mấy | ketquasoxo mb | web casino 777 | casino online vina | iphone 8 sim slot | nuôi dàn de 30 số khung 3 ngày | tructiepdagathomo | game casino uy tín | tin chuyen nhuong chelsea | bang tan suat loto | tên kí tự liên quân | cakiem slot | giờ reset giá cầu thủ fo4 | ketqua xo | đặc biệt theo năm | happyluke slot game căn phòng vui vẻ | wonky wabbits slot | go aircraft odd | online microgaming casino bonuses | 12bet slot | voucher shopee 1 triệu | tim lai yeu thuong | dự đoán xổ số bình thuận | wild swarm slot | 888 casino online | bongdaso24h | h reset fo4 | retro reels extreme heat slot | jeetwin casino review | 188net | mobile casino echtgeld | cau dep 88 | fruit farm slot | game choang club | aco stainless steel slot drain | bar 7 casino |