NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cách chơi bài casino | kinh nghiệm chơi slot | max attunement slots dark souls 3 | chinese casino game | soi cau mn hôm nay | galaxy s7 sd slot | marina bay sands casino | winner casino erfahrungen | tao dan 3d | casino đà nẵng | casino portugal online | fruits n royals slot | quốc phòng hát chèo | slots nghĩa là gì | gtx 1060 pci slot | lich thi dau bong da seagame 2017 | bingo casino sites | jade magician slot | casino virtual dinero real | jackpot party slot game free online | ban acc fo3 | josé dinis aveiro | linear slot drain | cau soi mn | thong ke loto mien bac | đá gà casino | 888 casino mobile | lions pride slot | voucher shopee 1 triệu | cakiem slot | quay thử tìm cặp số may mắn | slot 9999 | thống kê loto | expansion slots | wc deur slot | casino hải phòng | 888b casino | tên kí tự game | casino bắc ninh | thông kê tân suất loto | bongdaso24h | xosothantai |