NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cleopatra casino | siêuno win | casino gold rush | xsbinh vuong | slot machine | con slot | jungle jackpots slot | slot god of wealth | ruby slots casino | doraemon nobita và cuộc chiến vũ trụ tí hon 2021 | sky casino | wink slots promo code | 88 casino | tạo tên liên quân đẹp | casino hoi an | vipbet | how many caesars casinos are there | dự đoán xổ số quảng ngãi wap | xo so mien bac minh ngoc | play free slots | bắn cá tiên slot | vwin casino | vipbet | slotted hex nut | penthouses cuộc chiến thượng lưu tập 7 | 101tv bóng đá | does my laptop have pcie slot | plaza hotel and casino las vegas | slot studio | tai epic slot | casino advent calendar | rio all suite hotel & casino | mạt sắt là gì | app mod skin liên quân | empire game | free online slots wheel of fortune | slotted metal bar | tải bắn cá hoàng kim apk | dell latitude e7470 ssd slot | akay hau | soi kèo iraq indonesia | slot icon | swipe and roll slot |