NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

khởi nghĩa hương khê | vân tịch truyện zing tv | 7 vien ngoc rong 4 9 | wintrillions casino review | quay thử tìm cặp số may mắn | sơ đồ tư duy tây tiến | đánh bài casino | chat zalo me trên điện thoại | kq100 ngay | legends casino | happy pig slots | casino holiday packages | best online casinos for us players | casino nagaworld | taskbar | signal slot c++ | cách bắt đề kép bằng | loto678 com | tro choi nau | free slots 777 games | vatgia | minecraft 1 18 | tao dan 2d | xsmn 14 05 23 | exciter son mau dep | lịch thi đấu bóng chuyền nữ hôm nay | loe ngoe | xo so mien bac 8888 | msi z270 a pro m 2 slot | game of thrones slot machine | giải j-league 1 nhật bản | bao lô 100k trúng bao nhiêu | mơ thấy người chết sống lại | check rank lol | lucky casino | maria casino bonus | las vegas sun casino | zing tv thái lan | lucky slot machine | van quang log qua doi | adventure palace slot | cô dâu gán nợ tập 1 | k8 casino | turnkey online casino | lịch thi đấu v-league 2024 |