NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

chơi casino trực tuyến chỉ có thua | netbet casino live | những bài hát karaoke hay | hanoi casino list | 16 ram slot motherboard | casino potsdamer platz | boku online casino | beach life slot | miền trung gồm tỉnh nào | gala casino 10 pound free | tin chuyen nhuong chelsea | xoilac1 | casino girl | game lậu mobile việt hóa | big slot wins | casino online vietnam | best online casinos in ireland | dynamite digger slot game | xsmb 888 vn | casino royale summary | mobile casino no deposit bonus no deposit | casino in victoria canada | ket qua vong loai world cup 2018 | moc bai casino | football slot game | liên quân modpure co | minecraft slot machine plugin | kaiju slot | mannhan tv live | your name zing tv | gói cước wifi viettel | bitly tiengruoi | đề về 58 hôm sau đánh con gì | online casino pay by sms | slot là gì | dolphin gold slot | xsqn | vg 88 casino | biloxi casino buffets | tai game fan slot |