NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

ty le ca cuoc bong da cambongda | usa slots | tải teaching feeling | xổ số minh ngọc miền bắc | casino tuyển dụng | party slots | lazađa | mod_fcgid can t apply process slot for | sg slots | m88 sảnh casino | xuatnhapcanh hochiminh | lich thi dau u23 chau a 2024 | nằm mơ thấy rắn | free money casino | kq30 ngày | 88club casino | xổ số cần thơ ngày 19 tháng 1 | sportsnation casino | hotels near blue chip casino | slot machine casino online | online microgaming casino bonuses | 999 slot apk | xo so mien bac minh ngoc | felix casino royale | maquinas slots | casino parents guide | blue chip casino hotel and spa | slot mobil | chuyển từ word sang excel | stainless steel slotted turner | mobile casino slots | check rank lol | dàn đề 10 số | nextgen free slots | cara daftar judi slot online | casino clipart | vegas slots real money | rolling hills casino hotel | bonus wheel slots | slot reds | slogan tiếng anh | ket qua 3d | free slots that pay real money | soi cầu hcm chính xác | wedge lock slot dell | lịch thi đấu v lich 2024 |