NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino feest organiseren | cách xóa danh bạ trên lumia 630 | mơ thấy vàng | bếp từ đôi điện máy xanh | sg online casino | casino ho tram | giải đặc biệt theo năm | pháp vs kazakhstan | bdhn | net truyen full | viva bong88 | online bingo and slots | the rat pack slot | sun casino | casino trực tuyến | cách chơi bài casino | phu quoc casino hotel | hình ảnh casino campuchia | poipet resort casino | electronic slot machines for sale | casinos in washington | magisk manager | baccarat casino online | du doan xsmn dai phat | kubet -- ku casino | casino slot play | casino 67 | tai zingplay ve may tinh nhanh nhat | slot games | online mobile casino games | slot meaning | smb to pci e slots | rizk casino review | wap ty le m7 | tên liên quân kí tự | đánh bài casino | express casino | xổ số an giang ngày 25 tháng 2 | s689 casino | soi keo ibet888 | stt về cuộc sống chất | hang 2 duc | well of wonders slot | casino belge en ligne | no download casino | golden goddess free slot machine | chiêm bao thấy rắn | fallout new vegas casinos |