NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

blackjack casino en ligne | voucher shopee 1 triệu | lazađa | dragon fortune slot machine | tỷ lệ kèo tv | down zalo | mơ thấy đưa tiền cho người khác | naruto phần 2 | casino portugal online | live casino solutions | top 100 online casinos uk | game choang club | 888 bet casino | kí tự tên | willkommensbonus casino | ku trò chơi casino | ibongda dự đoán | vesper casino royale | top 100 online casinos uk | happyluke slot game căn phòng vui vẻ | slot 意味 | máy đánh bạc slot machine | bonus wheel slots | turnkey online casino business | lô khung 247 | doc bao24h hom nay | kết quả xổ số miền bắc ngày 25 tháng 7 | miền trung gồm tỉnh nào | truc tiep oman vs turkmenistan | casino in bangkok pattaya | baccarat casino | mod skin lq | casino chau doc | tropicana online casino | nhacai88 | akay hau | casino hl | does my laptop have pcie slot | BK8 | casino 2go | lịch thi đấu lck mùa xuân 2021 | mystic lake casino map | casino near me |