NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

dự đoán xsmb ngày mai | slot sensor | mega moolah slot game | xổ số ngày 27 tháng 6 | tropicana casino online review | en kazançlı slot oyunu | soi cau 666 mien phi | nhacai88 | casinos in washington | dien dan an choi mien nam | live casino free play | slot crazy | mad slots | 7 vien ngoc rong 4 9 | trangchu24h | casino prom theme | tim ban tren zing me | live casino tables | fun88 casino | code free fire 2021 | gala casino 10 pound free | m88 sảnh casino | venus casino 67 | vào bóng nhanh không bị chặn | bongdalu | ku casino pro | lienquan code | quay slot rong vang | choi casino truc tuyen | casino tuyển dụng | fifa nhật bản apk | west casino | football champions cup slot | phim casino royale | uk casino | mhw slot upgrade | big win casino | fabet live tv | slot die | quay thử xổ số đà nẵng giờ hoàng đạo | k8 casino review | ex là gì | game khung log | soi cau vietlott | dự đoán xsmb atrungroi | livescore kqbd | xem clip 8 phút diễn viên về nhà đi con | lộ trình xe buýt số 10 | eurogrand casino free spins |