NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

dream league 2024 | casino locator map | gladiator slot | game slot doi thuong uy tin | mạt sắt là gì | renton casino | spokane casino | 1 x pci e x16 slot | casino vip program | candy jackpot slot machine | code free fire ko giới hạn 2021 | trực tiếp tennis djokovic - tsitsipas | ketqua24h vn index | ninja slot | 4399 nau an | free slot games canada | lucky slots casino games | diễn đàn sex | bestes casino las vegas | free slot games with bonus rounds no download no registration | lịch đá bóng hôm nay seagame | xsmnchunhat | ngây thơ miền bắc | w88 vin shop | swipe and roll slot | đá gà casino | luv slot | tai game chem hoa qua ve dien thoai | swipe and roll slot | hp z420 pcie slots | cau 568 | circus circus hotel casino reno nevada | casino philippines | colorado grande casino | vợ messi | white wizard slots | ca cổ phạm lãi biệt tây thi | gold rush casino game | bong889 | xem bói ngày tháng năm sinh | chuyen nhuong chelsea | đê chèm | bong888 com |