NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

white label casino | king 86 | casino raiders 2 | casino filme | snake eyes casino | chiêm bao thấy rắn | pragmatic play slot | quay slot rong vang | vegas slots real money | paypal slots | v6bet | culi trong bóng đá là gì | booking time slots online | casino gold rush | melbourne fl casino | tinthethao24 7 | 777bet casino | dự đoán xổ số bình dương hôm nay | blazing star slot | tai zalo ve dt | signal slot qt | joker millions slot | cf báo danh | tên pubg | con gà số mấy | sabong | mơ người chết sống lại | lucky casino free spins | best casino hotel in hanoi | usa casino bonus codes | pci express 3.0 x4 slot | casino cần thơ tuyển dụng | link sopcast bong da hôm nay | nhacaiee88in | mainboard m2 slot | tải 888 casino | đề về 68 hôm sau đánh con gì | online casino games real money | slot phones | wapvip com | fang69 tren may tinh | chơi cá cược thể thao casino | samsung note 10 sim slot | dead target | đá gà casino campuchia |