NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino hồ tràm có cho người việt vào không | vesper casino royale | casino ho tram | vip casino | kẻ săn anh hùng | slotted hole | da ga casino | dow zalo | sydney slot machines | en kazançlı slot oyunu | dự đoán xổ số bình dương | lộc 79 win | vue slot event | tin chuyển nhượng chelsea | v slot | tú lơ khơ tá lả phỏm zingplay | roma đấu với feyenoord | đá gà trên casino | best credit card casino | mainboard m2 slot | 888 slots | nextgen slots | sdg777 | cash wheel slot machine | hùng vương vector | 888 casino mobile | no deposit slots uk | mhw slot upgrade | nguyệt đạo dị giới manga | thống kê tổng | giàu to 86 | kí tự liên quân đẹp | tần xuất hay tần suất | truc tiep euro 2021 | bắn cá bctc trên web | wap soicauxoso doan | vegas diamonds slot | nằm mơ thấy mình đưa tiền cho người khác | fortune slots | tên liên quân kí tự đẹp | bóng đá 8899 | tần xuất | nextgen slots | naruto truyen ki |