NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

đánh bài casino | doraemon tập mới | kq bd 24 | w88 vin shop | tạo dàn 3d | đại chiến kame | top 10 online casino | soi cầu xsvl tài lộc | casino source code | xosothantai mobi | best casino guide | laptop888 | xsmbtruc | casino roulette tips and tricks | ban acc fo3 | 1973 mệnh gì | chumba casino free sweeps | mesin slot | 10 no deposit slots | kairat almaty vs | game slot moi | soi kèo barca | lost life | luckys casino | dự đoán xsmb hôm nay | tải saoclub | online casino games | the rat pack slot | slotted | mơ thấy người mình thích nhiều lần | chia khoa van nang | ketting slot | sieu nhan cuong phong tap 49 | nha cai88 net | kq100 | ketqua24h vn index | ignition casino mobile app | sunwin casino | slot machines in australia | renton casino | vuejs slot class | golden tiger slot |