NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot vervangen voordeur | con số huyền bí | harley davidson slot machine | 1 slot nghĩa là gì | casino trực tuyến vodich88 | iwin88 | vtv16 | top rbk | fabet live tv | mad slots | lịch cúp điện bình phước | bingo extra casino | play together miễn phí không cần tải | tú lơ khơ tá lả phỏm zingplay | dàn đề 36 số nuôi 3 ngày | table mountain casino friant | game trực tuyến casino | bảng phong thần 2006 | y8 hai nguoi | casino hà nội | hoom | bk8 casino | lịch thi đấu carabao cup | tên kí tự game | smb to pci e slots | 88 online casino | kqbd7m | big wheel slot | arceus x | list of casinos in iowa | crank and slotted link | sheraton saigon casino | mgm grand casino detroit hotel | nagaworld casino | miter track stop for t slot | eagle pass casino hotel | gold rush casino game | slot milling | casino trực tuyến m88 | dao hai tac online | huawei nova 3i sim 2 slot |