NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino 1995 trailer | casino duo | casino de veneza | ban ca online 4 nguoi | xem đá gà trực tiếp casino | slot pattern react | 777 com casino | soi cầu xsmt win2888 asia | wintrillions casino review | boss slots online | slots in maryland | ác nữ khi yêu | michigan casinos map | thẻ cào miễn phí | vicky ventura slot | xem bài tây | online casino no deposit bonus keep what you win | robin hood slot | crown casino danang | tên kí tự game | casino billboard | legends casino | express card slot | ssd wifi slot | casino su | pci sound card in pcie slot | how to play penny slots | siêuno win | pharmacie casino montpellier | casinos analytics | casinomeister slot | wwin | ariana slot machine | genting casino | mac casino online | casino trực tuyến việt nam | seneca niagara casino and hotel | galaxy casino | giờ reset fo4 | toàn chức cao thủ phần 3 | goo88 | ket qua bong da vong loai world cup 2018 | casino en linea peru | 88win casino | mannhan tv live |