NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot crazy | thong ke lo | giant panda slot | trực tiếp bóng đá hàn quốc vs lebanon | casino trực tuyến uy tín cvproducts | mơ thấy nhiều rắn | nhà cái uy tín nhất việt nam | casinos in washington | me zalo chat | p3 casino | đánh bài casino trực tuyến | lmss | kí sự thiếu niên | genting casino in london | đề hôm nay đánh con gì | ai my nhan zingplay | corona resort & casino phú quốc | load letter paper in manual feed slot | fun 8802 | primal slot | y8 2 người | lucky time slots | giờ vàng chốt số miền bắc miễn phí | slot car accessories | dark vortex slot | du doan lodephomnay | winner casino app android | security cable slot | casino sign up | casino de monte carlo monaco | game tặng code 10k | dragon born slot | bingo sites with slots | bongda88 com | free slot games with bonus rounds no download no registration | fortuna slot |