NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

ku vip slot | doraemon nobita và cuộc chiến vũ trụ | thống kê giải đặc biệt theo năm | city of dreams casino | link vào 12bet khi bị chặn | 10bet online casino | casino 88 | pmc slot | casinomeister slot | dự đoán xsmb atrungroi | mô tưa bơm nước | xo so mien bac minh ngoc | insufficient attunement slots dark souls 3 | d365 | nieuw slot voordeur | money game slot | ku777 casino | rio all suite hotel & casino | cách xóa trang | cutrai | casino corona phú quốc | 1429 uncharted seas slot | cô vợ mẫu mực | iwin888 | free slot games with bonus rounds | the albuquerque downs racetrack & casino | wad bong da | jammin jars slot free | out lock | quay hũ slot | tại ku casino cho pc | online casino pay by sms | casino thien ha | tải ku casino | top 10 casino | nằm mơ thấy xác chết đánh số gì | buzz bingo and the slots room barkingside | cau soi mn | gold eagle casino | mc vs real trực tiếp | ket qua bong da vong loai world cup 2018 | nuoi lo khung 247 |