NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

ibet789 | caribic casino | hotels with casinos | tinchihau | vwin com | code free fire ko giới hạn 2021 | danh sách những bài hát bolero hay nhất | du doan xsmn dac biet | 777 casino games | wolf hunters slot | casino game online roulette | west casino | live casino house review | kho báu huyền thoại ios | lich ngoai hang anh 2016 va 2017 | casino việt nam ở đâu | poisoned apple slot | game slot moi | sunwin casino | tạo dàn 3d 4d | fallout new vegas casinos | sxhn mien nam | motels in cherokee nc near casino | casino in goa | video poker vs slots | fika casino | live casino house | mu88 casino | best online slot machines for real money | code free fire 2021 | f88 la gì | giang hồ phố hoa phần 2 | eye of horus online slot | caravela casino | windguru phan rang | taxi 3d | mc vs real trực tiếp | k8 casino review | stt về cuộc sống chất | ket qua vong loai world cup 2018 |