NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

game lậu mobile việt hóa | play raging rhino slot | robin hood slot | akay hau | free money casino | nhận định as roma | taxi 3d | casino reviews nz | robin slot | sweet alchemy slot game | 1 slot là gì | online casino jobs from home | hotels near parx casino bensalem | tải ku casino | bocfan | 21d | pt slot | kích thước iphone 11 | đổi thẻ 247 | casino cage | gai goi net | grand victoria casino elgin il | casino roleta | slots garden no deposit bonus codes 2018 | slot seal | casino in russellville arkansas | cabaret club casino | starspins casino | kêt qua xô sô mb | thống kê giải đặc biệt theo tuần tháng năm | Hội Viên M8win | colorado grande casino | smb to pci e slots | online casino slots | casino nightclub | casino nightclub | live casino free play | 5 homestay vũng tàu | rocky gap casino | bonus member baru slot | casino slots real money | casino night decorations | deur op slot sleutel kwijt | xổ số cà mau ngày 20 tháng 6 | land slot |