NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

bigclub | sandinh pro | 6696 | quay slot | quay thử xsmn 168 | valley view casino | xổ số ngày 27 tháng 12 | luck of the irish slots | lucky slots | online casino zahlt nicht aus | agen judi live casino | edgewater casino | luckys casino | thông kê tân suất loto | trò chơi zombie | miami casino hotel | speeder x8 | spin casino live chat | qh88 casino ski | wonky wabbits slot | casinos mobile francais | huyền hạo chiến ký | all slots canada | game slot vtc | chat zalo me trên điện thoại | wap ty le m7 | 52choigame | mobil casino oyunları | vg 88 casino | slots in maryland | xstd90 | accommodation christchurch casino | fruit slots online | free slot machines with bonus | nhà cái game slot | dafu casino hack | best rtg casinos | lotus casino | slot online | hoyeah slots | casino 888 app | venetian casino | slots in maryland | sliding door slot | slot là gì trên facebook | free online video poker slots | philip slot | asideway com | wap xs | golden tiger slot |