NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

evolution gaming slots | vn88 casino | casino phú quốc tuyển dụng mới nhất | william hill casino android app download | sparks slot review | las vegas casino online | game offline hay cho laptop win 8 | android casino bonus | xsthan tai mt | tải app safe thần quay | tipico casino | video slot games | slot game online for mobile malaysia | kunet | casino restaurant | caro casino | vung tau casino | caesars palace casino | wazdan slots | slot liên quân | lich thi dau1 | get lucky casino | m soha | thống kê loto | trang ve thon da mp3 | vue slot event | do son casino | free slot machine games | banthang vip | casino online vietnam | juegos casino dinero real | yui hatano | lich ucl | hitstars casino | lịch world cup 2024 | hùng vương vector | kairat almaty vs | sunwin casino | vao w88 w88th2 | charlestown races and slots | live casino online | beach life slot | canada casino reviews | giauto86 club | grosvenor casino slot machines | tải app safe thần quay |