NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

harrahs casino online reviews | retro reels extreme heat slot | robin slot | mơ thấy rắn trắng | baocaonoibo | game roblox mien phi | mod skin liên quân app | kinh nghiệm lô de | slot belvedere | du doan ket qua xo so quang ngai | du doan ket qua xo so quang ngai | trusted casino | royal casino cf | load letter paper in manual feed slot | monte carlo casino monaco | maplestory pocket slot | bang dac biet nam | tải trò chơi roblox | casino stud poker | nằm mơ thấy chó | xem bài tây | toàn chức cao thủ phần 3 | mega casino | ddowload zalo | kq100 ngay | ipad sim card slot | mơ thấy người chết sống lại | fabet live | naruto phần 2 | xoilac365 | 777 slots | vn88 casino | b68ng com | casino feest organiseren | mod skin lq | vera und john casino | ssd wifi slot | truyen16 | casino house | 888b casino | xem truc tiep thvl2 | đặc biệt theo năm | y8 hai nguoi | slot games | poipet resort casino |