NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

ainsworth slot machines | cakiem slot | tải game đua xe | juegos de casino online gratis | boku online casino | sport288 | slot id minecraft | penthouses cuộc chiến thượng lưu 3 tập 13 | casino online dinero real | xổ số cà mau ngày 20 tháng 6 | 360game | ho chi minh casino | mugen 200 slots | mơ thấy người mình thích nhiều lần | fifa han | online slots real money paypal | carnival queen slot | m88 com live casino | bong888 com | casino de monte carlo monaco | ice ice yeti slot | tải 888 casino | ok online casino | casino game code | lucky 888 casino | xstp thu7 | sweet alchemy slot | slot club 777 | spela slots | hanoi casino | xem bói ngày tháng năm sinh | ketqua xo | cashanova slot | 2xsport | casinos in asian countries | ruby fortune casino nz | slot maker | xstv hang tuan | thánh bắn cá slot | slot thai | slot 88 | ddowload zalo | dự đoán xổ số quảng ngãi thần tài | hells grannies slot | giải đặc biệt theo năm | online casino 120 free spins | boom casino | captain cooks casino canada | crank handle slot re2 |