NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

ku casino us | loe ngoe | clara lee | ica phien ban moi nhat | kêt qua xô sô mb | xổ số kiến thiết có tạm ngưng không | rocky gap casino | wild orient slot | mr green live casino | ban acc fo3 | 888 ladies slots | australian slots | postgres replication slots | tải ku casino | hôm nay đánh de con gì | it casino | minecraft 1 18 1 | seven sins slot | xổ số đồng nai ngày 17 tháng 05 | bilutv net | huong duong nguoc nang tap 40 | tai game fan slot | western slots | giải đặc biệt theo tháng | online slots tips | bảng phong thần 2006 | triple casino | sunpazuru | bitcoin casino club | am muu va tinh yeu tap 731 | tuyến xe buýt số 10 | around the world slot | grand sierra resort and casino reno nv | casino raiders 2 | live casino malaysia | grand villa casino | cash wheel slot machine | casino online vina | n3ds sd card slot | 2bong sbobet | best mobile slots game | free slot machines with bonus | bet365 casino apk | slot club casino | fafafa gold slots free coins |