NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

pci card in pcie slot | dragon born slot | royal casino | edgewater casino | s689 casino | casino tilbud | thử thách nghiệt ngã phần 2 | xổ số | vozgame | slot booking app | situs judi slot terbaik | slot nghĩa là gì | slot แจก เครดิต ฟรี ไม่ ต้อง ฝาก 2020 | hanoi casino poker | casino w88 | slot god of wealth | slot machine jackpot | best online casinos in ireland | wap soicauxoso doan | nằm mơ thấy máu | thống kê giải đặc biệt theo tháng năm | how to go to the casino | casino phượng hoàng bắc ninh | tai app ku casino | bóng đá aff cup 2021 | city casino online | casino fh | casino near me | empire game | casino là gì | scudamores super stakes slot | xo so mien bac minh ngoc | checker bắc ninh | tên kí tự đặc biệt liên quân | jammin jars slot free | sdt gai goi zalo | hialeah casino | slot machine card | tinh dầu đuổi chuột | vòng quay kim cương free fire | mgm grand hotel and casino las vegas nv united states | winning room casino review | 10 no deposit slots | xsmn 18 4 2023 | vwin casino | casino pullman | adsbygoogle push error no slot size for availablewidth 0 |