NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

10bet online casino | soi kèo bóng đá | crypto casino no deposit bonus | online casino blog | ku11 today | game trực tuyến casino | bet247 casino | đại chiến kame | code siêu cấp gunny mobi | betwin | edgewater casino | timber la gì | crown casino danang | dd xsmn vip | keobongdahomnay | thoi loan apk | chém hoa quả | new york new york hotel & casino | xổ số vũng tàu ngày 11 tháng 1 | xổ số đồng nai ngày 2 tháng 8 | 888 slots | xsmb hôm nay đánh con gì bà con ơi | vwin casino | western slots | jav akari | joker123 slot | đại chiến kame | lee sa rang | dell vostro 5470 ram slot | trò chơi casino | casino web | seriöse online casinos | bắn cá tiên slot | hotels with casinos | free mobile slots | casino in venice italy review | zalo chat | how to enable 2nd ram slot | xổ số ngày 27 tháng 12 | yandere simulator | thống kê giải đặc biệt 30 ngày | soi cau rong bach kim net |