NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

passport slot availability | miền trung gồm tỉnh nào | jackpotcity casino review | game naruto truyen ky | isa slot motherboard | chuyển file word sang excel | 32 bit pci slot | how to play wheel of fortune slot machine | mhw slots | slot crazy | cách xóa trang | w540 ram slots | coi bói tình yêu | live casino casimba | các bài hát karaoke | jammin jars slot free | giant panda slot | igt slot games | sparks slot review | quay thử xổ số quảng ngãi giờ hoàng đạo | casino leon | chuyển nhượng chelsea | hai số cuối giải đặc biệt miền bắc | xổ số đồng nai ngày 2 tháng 8 | slotty casino | casino royale | yui hatano | blazing star slot | tan suất loto | vợ messi | blazing star slot | casino mga | ladies nite slot | css slot machine animation | mobile slots no deposit | casino meaning | free slot games with bonus rounds no download no registration | tan suat | house of fun slots free coins | ladies nite slot | nano sim in micro sim slot | dragon casino game | thần ẩn tập 15 | nye online casinoer | new pay by mobile casino |