NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

springfield ma casino | casino de monte carlo | golden slots casino | postgres replication slots | kynu huong tuyet | lotsa slots | canberra casino hotel | co up sanh rong | lucky slots casino games | yukon gold casino | arceus x | online casino verification | tải vichat | tổ chức scp | feyenoord đấu với roma | lions pride slot | lộ trình xe buýt số 10 | slot academy | thống kê giải đặc biệt theo tuần theo tháng | 777win casino | bet online slots | nowgoal tieng viet | soi keo ibet888 | vitamin 3b có tác dụng gì | pots of gold casino | ku casino pro | slot boot | gà mạng | ruby slots sign up | top rbk xsmb | thống kê lô xsmb | 888 casino mobile | omni slot | slot 888 | zing new thể thao | hôm nay đánh de con gì | lịch thi đấu vl 2021 | expansion slots | agen judi live casino | dragon born slot | dự đoán xổ số bình dương hôm nay | fruit mania slot | wild scarabs slot | mobile slots bonus | thống kê hai số cuối của giải đặc biệt | play 88 fortunes slot | tinchihau | xổ số thịnh nam bạc liêu | agen slot online terpercaya | aco stainless steel slot drain |