NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

ex là gì | casino hcm | mod_fcgid can t apply process slot for | xsmnchu nhat | mobile slots no deposit | mơ người chết đánh con gì | ca sĩ giấu mặt | big777 đẳng cấp game slots | xsbd 19 1 | sg online casino | evowars io game y8 | jackpot casino login | game8jp | speeder x8 | slots that pay real money | w540 ram slots | exciter 135 | starspins casino | clip 8 phút diễn viên về nhà đi con | ca cổ phạm lãi biệt tây thi | steam tower slot review | igt slot games | timber la gì | casino trực tuyến uy tín | casino grande monde | chat zalo | free slots 777 games | najlepsie online casino | acer predator helios 300 hdd slot | best online casinos in ireland | blackjack casino en ligne | viec lam o casino campuchia | online casino slots | casino vip program | casino organization | online slots for money | kq futsal world cup 2021 | best casino hotel in hanoi | best online casinos in ireland | game slot tặng tiền |