NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

online slots welcome bonus | gaigoi nha trang | bet365 casino bonus | ketqua24h vn index | slots 500 | mgm grand hotel and casino las vegas nv united states | hotline slot | tai zing speed | lucky slots | jackpot dreams casino | bingo sites with slots | ignition casino mobile app | casino and hotel | rapidi casino | thông kê tân suất loto | vue slot event | 188bey | iwin casino | best casino app for android | din casino bonus | casino night outfit | carnival queen slot | giải đặc biệt trong tuần | liên quân modpure co | ket qua 3d | slotted hole | ku vip slot | vip slots review | william hill casino club mobile | 888 casino online | casino trực tuyến m88 | tiffany mills slots | doctor love on vacation slot | most secure online casino | tải evowars io | thống kê loto miền bắc | xoilac tv 90 phút | sam loc bigkool | cổphieu68 | kết quả loto | miền trung gồm tỉnh nào | ipad sim card slot | mod shadow fight 2 |