NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cascading reels slots | cf báo danh | web casino 777 | slot belvedere | jeju united | sum sweet | free slots 777 games | tsumugi | android casino bonus | mayfair casino london | nhacaiee88in | gnome wood slot | dual slot | king slot | sex kynu net | casino jobs london | how to play the penny slots | casino slot | slotted washer | novomatic slot machine | konami slots online | slogan tiếng anh | lo gan py | chữ kiểu liên quân | banner casino | giochi gratis slot | casino roleta | casino 1хслотс | casino bank | mơ thấy cứt | winning room casino review | book of oz slot | ly cay bong mp3 | casinos gratuitos | nhâp code liên quân mobile | ức là bao nhiêu | hack golden hoyeah slots | online slots australia real money | casino bonus games | danh sách các casino ở việt nam | keo nha cai m88bet | giải đặc biệt cả năm | thống kê giải đặc biệt theo tuần tháng năm | agree gì | casino online srbija | giấc mơ phát tài tập cuối | slotted or unslotted waste | clip 8 phút vtv |