NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

1429 uncharted seas slot review | bóng đá 8899 | hack slot gamvip | banca golden hoyeah slots slots | uk casino | gladiator slot review | giá xe lead 2021 | kaiju slot | iphone 8 sim slot | mơ người chết đánh con gì | soi cau rong bach kim net | bong da chuyen nhuong | dead target | win 777 slot | jackpot giant slot review | wapvip com | nằm mơ thấy nhiều cua đồng | casino grande monde | honey select | trực tuyến casino | ruby slots sign up | m88 com live casino | dd xstn | online casino malaysia | sell slot machine | new pay by mobile casino | casino online vietnam | 888 casino online | my play tren zing me | 200 deposit bonus slots | tần suất lôtô | grand villa casino | bitcoin casino club | casino del bel respiro | thư viện hmu | rebuy stars casino | 8868 | slots lv sign up bonus | big jackpot slots | pikachu online game | vòng loại world cup 2022 khu vực bắc mỹ | thơ về ông nội đã mất | soi cầu 247 me miễn phí | jeetwin casino review | casino in ho chi minh city |