NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

tên pubg | slot meaning | buffalo rising megaways slot | lịch thi đấu futsal 2021 | online casino 888 | casino lily | casino cups | slot hu | bảng đặc biệt 500 ngày | đá gà cựa sắt casino | slot la gì trong free fire | gà đá chợ tốt cần thơ | top 10 online casino | casino vergelijken | bilutv net | tisotructuyen | pmc slot | double bubble slot | slot machine | 90 phút chấm tv | postgres replication slots | 368 bet | treasure nile slot | james bond casino royale | prowling panther slot free | thái bình thiên quốc | game bài catte online | hu vang slot apk | casino hanoi | slots nghĩa là gì | doraemon tập mới nhất | vitamin 3b có tác dụng gì | melbourne fl casino | kairat almaty vs | ĩp | agen live casino | casino hu | lich thi dau vcs | fifa mobile japan | live casino solutions | slot fish | bocfan | online slots pay by phone | game casino danh bai doi thuong | xổ số minh ngọc miền bắc |