NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino cups | double up casino slot machines | dimm slots là gì | taxi 7 chỗ | keonhacai mem | starlight kiss slot | great wild elk slot | casino online en directo | Vua ớt | casinos mobile francais | acc fifa giá rẻ | thoi loan apk | dự đoán xổ số bình dương | game xèng đổi thưởng | potato222 | hoiana casino | thong ke loto mien bac | cách chơi casino luôn thắng | dragon fortune slot machine | eye of horus slot game | sg online casino | bé tập đánh răng | bong chuyen nu 2017 | fbb88 | hay ho net | new casino not on gamstop | vn88 casino | link tải ku casino | rolling hills casino phone number | airport slots | nonstop ket thuc lau roi | 1973 mệnh gì | sol casino | 7890 | chơi casino trực tuyến trên điện thoại | lịch thi đấu carabao cup | saigon casino | xosothantai mobi | truyen dien van | live casino house | free slot games with bonus rounds | ion casino | lacxoi | lịch thi đấu play off lck | casino roleta | betwin | cách bắt đề kép bằng |