NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino de monte carlo salle medecin | vân tịch truyện zing tv | thông kê tân suất loto | casinos in washington | bắn cá thần tài | lịch thi đấu u23 châu a 2024 | flamingo las vegas hotel & casino | plaza hotel and casino las vegas | tạo dàn đề 3d | giải j-league 1 nhật bản | qh88 casino ski | vô địch brazil | slot là j | tsogo sun casinos | quad cities casinos | free deposit bonus slots | đề về 68 hôm sau đánh con gì | boom casino | antwerp fc | những bài hát karaoke hay nhất | mơ thấy ma đánh con gì | fake slots | tetri mania slot | kqxs daklak | netbet live casino | casino filme | 90 phút chấm tv | con số huyền bí | thư viện hmu | slot vlt | venetian rose slot | số vietlott mega | game slot | game casino danh bai doi thuong | slots guide | casino casino bonus | câu cá cùng warrior | n3ds sd card slot | witcher 3 slots slots slots | 10bet casino review | maquinas slots | gday casino mobile | game aog | slot id | mobile casino slots | đá gà casino campuchia | new online slots |