NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lịch thi đấu v lich 2024 | huong dan tai xuat kich | wyandotte nation casino | nhận quà free fire miễn phí 2021 | biloxi casino buffets | link slot online | ssd wifi slot | pci card in pcie slot | game slot | casino minimální vklad 100 kč | bắn cá slot | du doan trung thuong xsmb | 6696 | new mobile slot sites | trùm săn tiền thưởng | slots plus casino no deposit bonus | sg slots | kame | elvis the king slot | giochi online slot | xs100 ngày | gnome wood slot | giải đặc biệt theo tháng | slots lv sign up bonus | korean bj com | đồ sơn casino | m88 m88zalo | australia online casino | free spins no deposit casino | bejeweled 2 slots | f88 casino | dự đoán giải đặc biệt ngày mai 247 | springfield ma casino | soi cầu vietlott | 777 casino | live casino solutions | california casinos list | casino royale | pragmatic slot demo | casino campuchia mới nhất | nạp mobile legends | play online slot machines for real money | nonstop ket thuc lau roi | salary blackjack dealer | code vip hải tặc đại chiến | hack golden hoyeah slots |