NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

psg đấu với strasbourg | hack slot 2024 | what is dedicated slot | joe fortune casino | mannhan tv | wwin | where is the largest casino in the world | dự đoán xổ số tài lộc | lucky koi slot | corona casino | minecraft 1 18 0 | casino macao | casino affiliate | seneca resort and casino niagara falls ny | giang hồ phố hoa | gà mạng | online casino games | game slot doi the cao | win777 casino | casino clipart | omni slots casino | cherry casino playing cards v1 | xin một slot | jackpot city casino free download | live casino online canada | bói bài tây 52 la | real slots real money | xổ số đà lạt ngày 29 tháng 5 | casino hotel for sale | best uk slots | ác nữ khi yêu | 1gom vaobong không bị chặn | slot madness | ion casino | cởi quần áo | c88 | most secure online casino | casino vip program | free mobile casino slots | vegas diamonds slot | dream league soccer 2024 | slot online asia | edgewater casino | slot id minecraft | live casino usa | y8 2 người chơi | vuong quoc vang slot | chat zalo | mc vs real trực tiếp | casino nha trang |