NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

online slots pay by phone | yêu nhầm chị dâu tập 17 | slot thai | unity slot machine source code | fifa han | trang ve thon da mp3 | liên quân modpure co | online bingo and slots | rolet casino | 3547700 | slot games for real money | sunwin lịch sử tài xỉu thua | thái bình thiên quốc | new pay by mobile casino | tân suat loto | vg 88 casino | mega casino login | hon dah casino | 1 slot | william hill slots | felix casino royale | slots free spins no deposit | android casino bonus | joker millions slot | cách tải dream league soccer 2021 | ketquasoso | laptop sd card slot | sg slots | borgata hotel casino & spa atlantic city | slot crazy | game8jp | bocfan | slot cars | siêu bắn cá hũ vàng tài lộc | star casino sydney | casino hồ tràm tuyển dụng | ketqua30ngay | thai casino online | 32 bit pci slot | lịch thi đấu vl 2021 | winner casino online | bet789 vin | game pikachu online | súng pcp giá rẻ | xem bói ngày sinh | slot studio | corona casino phú quốc | xsbd 19 1 |