NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

fabet live tv | nhạc karaoke hay | slotted post | bonus casino sem deposito | slotted metal bar | akari tsumugi jav | 100 ladies slots | u23 dubai cup | cài đặt shopee | fargo casino | tải ark | bongdatructuyen keonhacai | las vegas sun hotel & casino | casino slot games | chat zalo me trên điện thoại | ca sĩ giấu mặt | jackpot city casino free download | casino online fund | truyen ngon tinh | spela slots | tan suat lo to | payment gateway for online casino | sportsbook slot | new casino online 2019 | chuyển từ word sang excel | slots slots | free slot machines with bonus | chats slot gaming center | dafu casino hack | cherry love slot machine | big win casino | the royal casino | hyper casino willkommensbonus | beste casino app | bongdalu | golden grimoire slot | tai zingplay ve may tinh nhanh nhat | live casino online canada | net slot | casino sun | hùng vương vector | du doan xsbd | mystic lake casino map | live casino house | casinos in birmingham alabama | gw99 slot |