NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

88 slot | hotels near blue chip casino | soi cầu xsvl tài lộc | 2 số cuối giải đặc biệt miền bắc | blackjack casino en ligne | win2888 casino | xo so mien bac 8888 | online casino zahlt nicht aus | trang chu vltk mobile | can you cash in casino chips anywhere | casino rubi | poker casino near me | dudoantyso bong da | golden tiger casino review | corona casino phú quốc | huong dan tai xuat kich | xsmnchunhat | vue component slot | soi cau mn hôm nay | casino holiday packages | extra chilli slot demo play | link 90p | grand ivy casino | halloween jack slot | giá xe exciter 135 cũ | kèo thơm hôm nay | soi cau vietlott | hack slot gamvip | slot slot | mơ thấy thắp hương | casino winner | golden palace casino | dubai casino | bingo and slots | casino winner kroon | casino ở campuchia | chip casino | mississippi online casino | vpay88 club | passport slot booking availability | slot vtc | ketqua24h vn index | vô địch brazil | global live casino | winner casino app android | it casino | boku online casino | vegas casinos | don than | hoom |