NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

online microgaming casino bonuses | fruit shop slot machine | dragon king slots | big jackpot slots | extra chilli slot demo play | gold eagle casino | casinos in washington | slots that pay cash | vuong quoc vang slot | casino sex | gw2 enrichment slot | wishmaker casino | casino hanoi | fan8 vin | slot là j | zeus casino | best wide slot toaster | huvang slot | ku trò chơi casino | skagit valley casino | crank and slotted link | game casino trực tuyến | du doan trung thuong xsmb | 1 slot | kqxsmb p1 | bonus casino sem deposito | slots slots | quay thử tìm cặp số may mắn | casino chau doc | magisk manager | free slot games | fruit spin slot | magic boxes slot | real slot machines online | wild orient slot | online slot games singapore | crypto casino no deposit bonus | soi cầu xsvl tài lộc | mpu slot | jackpot giant slot review | bao lô 100k trúng bao nhiêu | extra slots 1 mhw | halloween jack slot | casino x bonus | casino online fund | dự đoán xsmb xs me | potato222 | đánh cắp giấc mơ tập 1 |