NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

munchkins slot | 9club casino | tai game chem hoa qua ve dien thoai | big time gaming slots demo | fifa hàn | captain jack casino download | slotting là gì | 10 free no deposit mobile casino | nấu xôi đậu phộng | magic portals slot | soi cầu mn | free mobile slots | game khu rung bi an | fruit slots online | chơi casino online | permainan slot online | loteria slot machine | quay thử xsmn 168 | crowne international casino danang | vay tiền f88 | well of wonders slot | 777 casino roulette | event slot | birds on a wire slot | spider slot | legend of cleopatra slot | bonus code for slots lv | the rat pack slot | live casino free play | fair go casino login | kính lặn bắn cá | slots animal | chống chuột cho xe ô tô | lô đẹp 888 | xo so mien bac 8888 | lịch cúp điện bình phước | spela slots online | warlords crystals of power slot | choi game roblox mien phi | jogos de slots online | chốt lô | melbourne fl casino | casino heist | chơi cờ othello online |